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Abstract. Renormalisation of the recently proposed field-theoretic model for the ‘true’ 
self-avoiding random walk is analysed. Apart from a special case, which corresponds to 
the problem of a random walk in a random environment, the model is shown to be 
non-renormalisable in the case of short-range interactions, contrary to earlier conjectures. 
The long-range version of this field-theoretic model is shown to be renormalisable in certain 
regions of the parameter space, and renormalisation group analysis of the model is carried 
out to two-loop order in the region corresponding to the ‘true’ self-avoiding random walk 
with long-range repulsion. In a different region of the parameter space the anomalous 
dimension of the diffusion coefficient is determined exactly in perturbation theory. 

It has been argued that the recently proposed [ l ]  model of the ‘true’ self-avoiding 
random walk (TSAW) gives rise to a renormalisable field theory with short-range 
interactions, to which renormalisation group ( RG) techniques have been applied [2] 
to study the long-time behaviour of TSAW. The long-range interaction version of this 
field theory has also been analysed in a similar fashion [3]. In this letter we show that 
in earlier work an infinite set of marginal operators has been overlooked, the account 
of which renders the field theory, in general, non-renormalisable. More explicitly, the 
field-theoretic model [2] is characterised by three coupling constants g, , g ,  and g,, 
and we show that, in the space of these three parameters, the model is renormalisable 
only on the line g, = g,, g2  = 0, where its asymptotic behaviour coincides with that of 
the model of a random walk in a random-velocity field [4]. The long-range version 
of this model [3] also turns out to be non-renormalisable for arbitrary coupling 
constants. However, it is renormalisable in the plane g, = 0, and we have carried out 
to two-loop order the RG analysis of the long-range TSAW (to which corresponds the 
line g, = g ,  = 0). We also show that on the line g, = g2  = 0 the anomalous dimension 
of the diffusion coefficient is determined exactly by the fixed-point equation of the RG. 

In the continuum limit, TSAW is defined by the equations [2] 

dR( f ) ld f  = -givP(R(f) ,  f ) +  T ( f )  ( 1 )  

ap(x ,  t ) / a t  = 6 ( x - R ( t ) )  (2) 
where R is the position of the random walker, and 7 is a Gaussian noise with zero 
mean and correlation function T,(f)v,(f’) =2D0S(t’-  f ) S , , ,  where Do is the ‘bare’ 
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diffusion coefficient. These equations describe the short-range TSAW, whereas for the 
long-range version the equation (1) is replaced by [3] 

dR(t ) ld t=-g iVd(R( t ) ,  t ) +  ~ ( f )  (3)  

where the function 4 is related to p by 

+(x, t )  = I dx’K(x - x ’ ) p ( x ’ ,  t )  

with the kernel K ( x )  given by 

(4) 

We will be interested in the probability distribution P ( x ,  t )  of the random walks started 
at the origin 

P ( x ,  t )  = S(X - R( t ) )  

where R ( t )  is the solution of the problem (l) ,  (2) with the initial condition R ( 0 )  = O .  
For the retarded Green function 

G(X, t )  = e ( t ) p ( x ,  t )  

a functional integral representation may be constructed [ 21 

G ( x  -x’, t - t ‘ )  = (cp(x, t ) @ ( x ’ ,  t ‘ ) )  = Dcp D@ cp(x, t ) @ ( x ’ ,  t ’ )  exp(S) I 
where the action S is of the form 

S =  dt  dx+(x, t)[-d,+D,V’]cp(~, t )  

-g, dt  dt’dxcp(x, t ) V @ ( x ,  t ) O ( t -  f’)V[cp(x, t ’ )+ (x ,  t ’ ) ] .  ( 6 )  

I 
It is not difficult to see that the upper critical dimension of this field theory is two, 
and that the form of the interaction in ( 6 )  is not preserved under renormalisation: 
one-loop calculations [Z] show that at least one additional four-point term (the 
corresponding coupling constant is denoted by gz) is generated by renormalisation 
and the possibility that a third term (with g3) appears in higher orders cannot be ruled 
out. This leads to the interaction Si,, of the form 

&,,= d t  dt’dx{-g,cp(x, t)V$(x, t)O(t-t’)V[cp(x, t ’ ) @ ( x ,  t ’ ) ]  I 
We denote the cp@ propagator of this field theory by a full line, to which corresponds 
the factor (-io + Dog2)-’, and in which the arrow points from the @ end to the cp end 
(it also shows the direction of time). The notation for the interaction vertices is depicted 
in figure 1, where the slashes on full lines correspond to the derivatives in the interaction 
(7), and the arrow on the broken line shows the direction of time. 
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Figure 1. Retarded four-point vertex structures, the arrows show the direction of time, and 
the slashes on full lines correspond to the derivatives at the interaction vertices (7). The 
direction of the momentum flow is chosen according to the arrows. In the effective ‘static’ 
graphs, from which the renormalisation constants are extracted, the 0 function factor 
( - iw+o)-’  is replaced by unity, whereas the momentum structure of the vertices is the 
same as shown here. 

The RG analysis of this field theory has been carried out at one-loop level [2], but, 
unfortunately, it is not sufficient to consider only the four-point interaction (7),  as we 
shall now show. Consider the one-loop graphs of figure 2, which contribute to the 
four-point vertex renormalisation (for brevity, we have shown graphs containing the 
g, vertex only). The relevant contribution of each graph to the vertex renormalisation 
constants is given by an effective ‘static’ graph with momentum integration only, in 
which the 0 function factors of broken lines are replaced by unity and the internal 
frequencies are set equal to zero. The crucial point is that g, vertices may be attached 
in arbitrary number to these graphs without any change in the dimensionality of the 
corresponding momentum integral: if the g, vertex is added in such a way that the 
derivatives at the end of the broken line act to internal lines, then the corresponding 
momenta dimensionally compensate for the additional propagator, and the large- 
momentum behaviour of the integrand is the same as in the original graph. This is 
illustrated by the examples of figure 3. In general, the g, vertex is inevitably generated 
by renormalisation, which thus gives rise to an infinite set of divergences of different 
types, i.e. the field theory ( 6 ) ,  (7) is not renormalisable. There are, however, two cases, 
in which the g2 vertex is not generated by renormalisation, if it is absent in the initial 
model. First, if we choose g, = g, = 0, g3 # 0, then it may readily be checked that this 
model is self-consistent in the sense that four-point vertex structures corresponding to 
g1 and g, are absent in the perturbation expansion. Nevertheless, this model also turns 
out to be non-renormalisable, and the reason is that it contains another set of divergent 
IPI  (one-particle irreducible) graphs with an arbitrary number of external cp and 6 
legs. Examples of these are shown in figure 4. Second, if we choose g, = 0, g, = g, # 0, 

( a )  (6) ( c )  ( d )  

Figure 2. One-loop graphs of the short-range TSAW field theory ( 6 ) ,  (7), which renormalise 
the four-point interaction term. For brevity, we have depicted graphs with g, vertex only. 
These graphs give rise also to the vertex with gz, and for the general case (7) similar graphs 
with all vertex structures (and thus with differently arranged slashes) must be taken into 
account. 
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Figure 3. Examples of the structure of divergent one-loop graphs from the IPI graphs of 
figure 2: ( a )  is the original four-point graph and (6)  and (c) are, respectively, six and 
eight point graphs obtained by attaching g, vertices to it. 
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( a )  ( b )  ( C )  

Figure 4. Examples of divergent one-loop graphs of the short-range model (7) in the case 
g, = g, =0, g, # 0. Graphs ( a ) ,  (6) and ( c )  yield divergent contributions to four, six and 
eight point IPI  Green functions, respectively, and it is clear from these examples that there 
are similar contributions to Green functions of arbitrary order. 

the interaction (7) takas the form 

S. = - g  d t  dt’dxcp(x, t ) V $ ( x ,  t ) O ( t -  t’)cp(x, t ’ )V+(x ,  t ’ )  (8) 
inf 1 1  

which, apart from the retarded character of the interaction, coincides with the interac- 
tion of the field-theoretic model of a random walk in a random environment (‘random 
random walk’) [4]. The essential feature of the interaction (8) is that the + field enters 
only with a derivative. In the graphs of perturbation theory, the corresponding momenta 
therefore factorise at the vertices with external 6 legs, thus rendering all graphs with 
more than two external 6 legs superficially convergent (i.e. they yield only finite 
contributions to renormalisation constants after subtraction of divergences correspond- 
ing to divergent subgraphs). As a result, the model with the interaction (8) is multiplica- 
tively renormalisable with the same long-time asymptotic behaviour as in the model 
of a random walk in a random-velocity field [4]. From these arguments it follows that, 
apart from the special case gl = g 3 ,  g2 = 0, the previous analyses [2] of this model are 
not sufficient to determine the correct long-time behaviour for d s 2. 

The situation is, however, different in the case of long-range TSAW. In the formalism 
of two fields cp and 6 the kernel ( 5 )  would lead to interactions non-local in space, and 
to avoid them we introduce auxiliary scalar fields 4, $, and vector fields A, A’ and 
express the retarded Green function G of the long-range version of the model ( 6 ) ,  (7) 
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in the form 

~ ( x - x ‘ ,  t - t f )  = DP D+ D+ DJ DA DAI V(X, t ) & ( x ’ ,  t f )  exp(S) 5 
with the action S given by 

S =  - dt  dx dx’[A(x, t ) K - ’ ( x - x ’ ) a , A ( x ’ ,  t ) + $ ( x ,  t ) K - ’ ( x - x ’ ) a , + ( ~ ’ ,  t ) ]  I 
+ dt  dx[+(x, t ) ( -ar + &V2)~(x,  t)-giVcL(X, t)cp(x, t)V&(x, t )  I 
+g,+(x, t)Vcp(x, t)V+(x, t ) + J ( x ,  t)cp(x, t ) & ( x ,  0 
+ g , m  t)cp(x, t)V&(x, t ) + k  t>+(x,  t)Vcp(x, t) l  (9) 

where the kernel K is defined by the relation (5), and we have used the same notation 
for the coupling constants as in the short-range case (7). The field theory for the 
long-range TSAW problem (2)-(5) corresponds to the choice g, Z 0, g2 = g, = 0 in the 
action (9). The elements of the perturbation theory for this model are essentially the 
same as in the short-range case, apart from that the broken lines instead of the mere 
&function factor (i.e. 1/( -io + 0 ) )  contain a non-trivial momentum dependence: 
1/[(-iw+o)q2*]. Power counting shows that the upper critical dimension d,  is now 
equal to d,  = 2 + 2a, and-the most remarkable difference from the short-range case- 
the ‘bad’ one-particle irreducible ( I PI) four-point graphs of figure 2 are convergent for 
finite a > 0. It is not difficult to see that all I P I  graphs, which have more than two 
external cp or & legs, do not contain superficial divergences in this case, and therefore 
they are not relevant in the RG sense. However, three-point graphs with external cp 
and + legs (examples of which are the triangular IPI  subgraphs in figure 2) still contain, 
in general, superficial divergences, and they give rise to the renormalisation of the 
interaction vertices in (9). It should be noted that the structure of the three-point 
interaction vertices in the action (9) is such that it is preserved under renormalisation 
for each coupling constant separately: e.g., if we set g, # 0, and g, = g, = 0, then vertices 
corresponding to the coupling constants g, and g, are not generated by renormalisation. 
This holds for all three cases of a single non-vanishing coupling constant, and it implies, 
in particular, that the field-theoretic version of the long-range TSAW [3] (with g, # 0 
only) is multiplicatively renormalisable, whereas in the short-range case the interaction 
corresponding to g2 appears with the subsequent infinite set of marginal operators. It 
is not difficult to see, however, that the same problem is present also in the general 
long-range model (9) when g2 # 0: if we attach g, vertices to logarithmically divergent 
three-point graphs this does not change the large-momentum behaviour of the corre- 
sponding loop integral and we are again faced with the problem of generating an 
infinite set of marginal operators. Therefore, we conclude that even in the long-range 
case the field theory (9) is renormalisable if and only if g, = 0. 

We have carried out one-loop calculations for the general long-range model (9), 
and for the renormalisable case g,=O our results confirm the results of Peliti and 
Zhang [3]. However, our results for the case g, Z 0 are different from these, but we 
do not quote them here, since they do not give the complete information about the 
asymptotic behaviour of the general model. Instead, we present the results of a two-loop 
calculation of the long-range TSAW (g, Z 0, g, = g, = 0), which reveal singular behaviour 
of the long-range model near a = 0. 
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It is convenient to introduce a new coupling constant u ~ , ~ =  glD02C,, where C, = 
[21+2%1+ar( 1 + a)]-'. We write the basic action [6]  (which contains renormalised 
parameters only) in the form 

SB=- d t  dxdx'&x, t ) K - ' ( x - x ' ) d , $ ( x ' ,  t ) +  dtdx[+(x, t)(-a,+DV2)cp(x, t )  I I 
- u1p"D2C,'V$(x, t)cp(x, t)V$(x, t )  + +h, t)cp(x, t ) + ( x ,  t ) l  (10) 

where p is the scale-setting parameter, and E = 2 + 2a - d. The renormalised parameters 
of this action are related to the bare ones by 

DO = ZDD U'$ = ulpEZIZ;:  ( 1 1 )  

where ZD and Z1 are, respectively, the renormalisation constants of the diffusion 
coefficient, and the first interaction vertex of the action (10) (the second vertex is not 
renormalised). We use dimensional regularisation with minimal subtractions, and to 
two-loop order calculations with (10) yield 

( - 1 +  2 a ( l + a )  
z D = 1 - -  

z,=1- U1 + U :  ( - 2 + 2 + 4 a + a 2 E ) .  
2 ( l + a ) ~  8 ( 1 + ~ z ) ~ s ~  a ( l + a )  

Note the poles at a = 0 in the second-order terms. They appear due to the fact that 
two-loop graphs contain the IPI  four-point graphs of figure 2 as subgraphs, which are 
convergent for finite a, but become divergent in the limit a + 0. This shows in the 
relations ( 1 2 )  and ( 1 3 )  in the form of poles l / a .  An analogous situation arises in the 
long-range random walk problem, for which it has been shown [ 5 ]  that the results of 
the long-range model hold for a > a* = O ( E ) .  A similar analysis is possible also for 
the model ( l o ) ,  but we do not dwell on it here. From ( 1  1 ) - (  13 )  we obtain the following 
expression for the beta function 

3 2+6a+3a2  

where, and henceforth, the subscript 0 indicates that the derivative is taken at fixed 
values of the bare parameters ( 1  1 ) .  The non-trivial fixed point 

1 - -3( l+a)E 2 1 +  2+6a+3a2  &+O(El) )  ( ga(1 t -a )  

is perturbatively infrared stable, and thus controls the long-distance and long-time 
behaviour of the model. 

The anomalous dimension of the diffusion coefficient is the value of the function 

Y D = p -  

at the fixed point of RG. For d < d,  = 2 + 2a, we obtain 
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which, through the relation z = 2 + y g ,  determines the dynamic exponent z and thus 
the asymptotic behaviour of the model at the long-time limit. For the mean-square 
displacement of the random walker we obtain 

R2(f) - t 2 / ( 2 + y g )  - t l + ~ / 3 - ( 2 - 3 a - 6 a 2 ) ~ Z / [ 5 4 a ( l + ~ ) ]  

which implies superdiff usive behaviour (note that the first-order expressions for the 
exponent v = 1/(2+ 78)  for both the long-range TSAW and the random walk problem 
given in [3] are not correct). At the upper critical dimension we obtain logarithmic 
enhancement of diffusion 

- 
R ~ (  t )  - t(ln t )2 ’3 .  

Finally, we would like to point out that in the other renormalisable case with a 
single coupling constant ( g ,  = g, = 0, g, f 0) of the long-range model (9), the anomalous 
dimension yT, of the diffusion coefficient may be calculated exactly in the perturbation 
theory. In this case, only the last two terms in the interaction (9) are present, and it 
is not difficult to see that momenta, which correspond to the derivatives in the interaction 
terms, factorise in three-point I P I  graphs at the vertices with external Q and 6 legs. 
This renders the remaining loop integrals superficially convergent. In the minimal 
subtraction scheme the corresponding renormalisation constant is therefore trivial: 
Z,= 1 .  From (16) and the definitions ~ 3 , o = g j D g ~ C ~ ,  ~ 3 , 0 =  U , ~ ~ Z , Z ; ; ~  we obtain 

From this relation it follows that the fixed-point equation p3( U?) = 0 determines the 
anomalous dimension 76 = yD( u3 = U?) to all orders in perturbation theory. For the 
anomalous asymptotic behaviour of the mean-square displacement we obtain 

- 
d < d c = 2 + 2 a  (17)  R2( t )  - t 2 / ( 2 - e 1 2 )  

or 
- 
R 2 ( t ) -  t(In t )1/2 d = d C = 2 + 2 a  

which are the same as in the model of a random walk in a transverse random-velocity 
field with long-range correlations [5]. It is also interesting to note that the relation 
(17) corresponds to a value of the exponent Y which is exactly the same as was predicted 
in the long-range TSAW problem (2)-(5) from a simple Flory argument [3]. 
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